Wireless Networks - Radios

Wireless networks are composed of radios, radio towers or base stations, interconnection systems, and network management and information systems.

Radios may be fixed in location (such as a television) or may be mobile (such as a cellular telephone). Some radios may only communicate in one direction (typically a receiver) or may have two-way capability. When a single radio has both a transmitter and receiver contained in the same unit, it is called a transceiver.

Figure 1 shows a block diagram of a mobile radio transceiver. In this diagram, sound is converted to an electrical signal by a microphone. The audio signal is processed (filtered and adjusted) and is sent to a modulator. The modulator creates a modulated RF signal using the audio signal. The modulated signal is supplied to an RF amplifier that increases the level of the RF signal and supplies it to the antenna for radio transmission. This mobile radio simultaneously receives another RF signal on a different frequency to allow the listening of the other person while talking. The received RF signal is then boosted by the receiver to a level acceptable for the demodulator assembly. The demodulator extracts the audio signal and the audio signal is amplified so it can create sound from the speaker.

Figure 1: Mobile Radio Block Diagram

Radio Towers and Transmitter Equipment
Radio towers are poles, guided towers, or free standing constructed grids that raise one or more antennas to a height that increases the range of a transmitted signal. Radio towers can vary in height from about 20 feet to more than 300 feet. A single radio tower may host several antenna systems that include paging, microwave, or cellular systems. Radio towers are located strategically around the city to provide radio signal coverage to specific areas. At the base of the towers are electronic control rooms that contain the components to operate the radio portion of the communications system.

Radio towers and their associated radio equipment (e.g., base station) may include one or more antennas, transmitters, receivers (for two-way systems), system controllers, communication links, and power supplies. Transmitters provide the high level RF power that is supplied to the antenna. For broadcast systems, the amount of transmitter power can exceed 50,000 Watts. Receivers boost and demodulate incoming RF signals from mobile radios. If a base station contains receivers, it is typical to use one or more different antennas for the receivers. Controllers coordinate the overall operation of the base station and coordinate the alarm monitoring of electronic assemblies. Communication links allow a command location (such as a television studio or a telephone switching center) to control and exchange information with the base station. Base station radio equipment requires power supplies. Most base stations contain primary and backup power supplies. A battery typically maintains operation when primary power is interrupted. A generator may also be included to allow operation during extended power outages.

Figure 2 shows a typical radio base station block diagram that is used in a mobile telephone system. This diagram shows that the base station holds the radio transceiver (transmitter and receiver assemblies) that is part of the radio tower (cell site). This diagram also shows that one antenna is used for transmitting and two antennas are used for receiving (for improved reception). This base station also contains a backup battery that is maintained at full charge so radio communications will not be interrupted in the event AC power is lost.

Figure 2: Radio Tower and Base Station Equipment

Switching Facilities
Switching facilities are typically used in two-way mobile communication systems to allow the connection of mobile radios to other radios in the system or to the public telephone network. When used in a cellular system, the switching system is typically called a mobile switching center (MSC). The MSC, just like a local telephone company, processes requests for service from mobile radios (subscribers) and routes the calls to other destinations.

Figure 3 illustrates a wireless switching system basic functional components. These include: communication line interfaces, a switch, a customer database, system and communication controllers, primary and backup (batteries) power, and the software to interface and control the radio tower’s and base station (BS) it is connected to.

Figure 3: Wireless Switching System Block Diagram

Interconnection to Other Networks
Wireless systems may be connected to other networks. Broadcast wireless systems are connected to media sources (such as audio or video programs) via satellite links while cellular networks may be interconnected to the public telephone network. Interconnection involves the physical and software connection of network equipment or communications systems to the facilities of another network such as the public telephone network. Government agencies such as the Federal Communications Commission (FCC) or Department of Communications (DOC) regulate interconnection of wireless systems to the public telephone networks to ensure reliable operation.

Customer Databases
Customer databases are computer storage devices (typically a computer hard disk) that hold service authorization and feature preferences of customers. For wireless systems that allow the customer to operate in other territories, a home (local) database is used. Each wireless subscriber has a real-time user profile in the database that is typically called the home location register (HLR). The HLR identifies the current location of the mobile radio, the most likely place for the mobile to be, or the last location the subscriber was active. The MSC system controller uses this information to route calls to the appropriate radio tower for call completion. If the wireless user is not in a predetermined “home” range of the MSC, the mobile will register back through to the home signaling system to its home location register (HLR) for profile information.

When customers use the wireless services of systems outside of their home area, their information is transferred to a database in that system called the visitor location register (VLR). The VLR is part of a wireless network (typically cellular or PCS) that holds the subscription and other information about visiting subscribers that are authorized to use the wireless network.

System Security
In some wireless networks, access to system services requires validation of the customer’s identity. These systems may use an authentication center (AUC) to store and process secret data to stop fraudulent calls or prohibit access to other paid for subscription services.

Wireless phones transmit some of their identification information over the public airwaves when they attempt to access the system. Thieves may try and intercept this information and copy (clone) the identification information that would allow them to make phone calls that would be billed to the other telephone. To prevent this unauthorized duplication of identification information, an authentication process can be used that uses secret keys to validate access information.

During the authentication process, code keys are created from secret codes that are stored in both the mobile radio and in the system. Along with basic identification information, these keys are exchanged during each system access attempt. The secret codes are not transmitted. Because the system and the mobile radio have the secret keys, both the mobile phone and the system can validate that the code information is correct. If the codes do not match, the system should not allow the call to be processed. New codes are created during each access attempt to prevent copying of the codes and immediately attempting access.

No comments:

Telecom Made Simple

Related Posts with Thumbnails