Cordless systems are short-range wireless telephone systems that are primarily used in residential applications. Cordless telephones regularly use radio transmitters that have a maximum power level below 10 milliWatts (0.01 Watts). This limits their usable range to 100 meters or less.
The earliest generation of home cordless telephones used a single radio channel that used amplitude modulation. These first generation cordless phones were susceptible to electrical noise (static) from various types of electronic equipment such as florescent lights. The noise encountered when using these phones sometimes created a consumer impression that cordless telephone quality was below standard wired telephone quality. Improved versions of cordless phones that used FM modulation to overcome the electrical noise resulted. As cordless phones became more popular, interference from nearby phones became a problem. In apartment buildings where there were many users of cordless phones in close proximity, the ability to initiate and receive calls could be difficult as radio channels became busy with many users. This led to the development of cordless phones that used multiple radio channels. As voice privacy became more of an issue, cordless phones began to use scrambled voice. Some of these voice privacy systems were analog while a majority of cordless phones that offer voice privacy use digital transmission.
Figure 1 shows the evolution of cordless telephones. Until the mid 1990’s, most cordless telephones were limited to use in a small radio coverage area of their base station that was usually located in the home. That home base station was normally connected to the telephone line of the owner (either residential or a single office telephone line) and they were not intended to serve the general public. To add more value to the use of cordless phones, cordless telephones evolved to allow access to base stations in public locations. Cordless telephones could then be used in the home and in areas that were served by public base stations. The next evolution for cordless telephones was the combination of other types of wireless products and services into the cordless phone. This included the combination of wireless office and cellular telephones into a cordless phone.
Most home cordless telephones used frequencies in unlicensed radio frequency bands. Because so many homes operate cordless phones, each manufacturer must build-in circuitry to minimize the interference caused by other cordless devices. The original cordless phones use a very crowded frequency band (around 27 and 49 MHz) utilizing analog radio wave modulation. Recently, cordless telephones have been developed that operate in the 902-928 MHz unlicensed industrial, scientific, and medical (ISM) frequency band.
Residential cordless telephones must automatically coordinate their radio channel access as they operate independently of any type of network control. To coordinate radio channel access and avoid interference to other cordless handsets installed in the vicinity, cordless phones perform radio channel scanning and interference detecting prior to transmitting a signal.
Because cordless telephone systems do not as a rule have a dedicated control channel to provide information, the cordless handset and base station continuously scan all of the available channels (typically 10 to 25 channels). Figure 2 shows the basic cordless telephone coordination process. This diagram shows that when the cordless phone or base station desires to transmit, the unit will choose an unused radio channel and begin to transmit a pilot tone or digital code with a unique identification code to indicate a request for service. The other cordless device (base station or cordless phone) will detect this request for service when it is scanning and its receiver will stop scanning and transmit an acknowledgement to the request for service. After both devices have communicated, conversation can begin. When another nearby base station detects the request for service, it will determine that the message is not intended for it and will not process the call and scanning will continue.
1 comment:
thanks for sharing this wonderful blog.we are very thankful for this article. Telephone Cables
Post a Comment