Private Telephone Networks : Switching Systems, Numbering Plan

Switching Systems
Private telephone switching systems are network devices that are small versions of telephone switching systems. Early key telephone switches used mechanical levers (crossbars) to interconnect lines. These were called key service units (KSUs). PBX systems use a time slot interchange (TSI) memory matrix to dynamically connect different communications paths through software control. Computer telephony and LAN telephony systems use packet switching systems to interconnect one of more telephone station with each other.

For large private telephone systems, some of the switching functions may be distributed to remote points. An example of distributed switching is the Nortel RPE that allows the Meridian PBX to remote a portion of its station interface to a remote site via a pair T1’s or E1’s.

Numbering Plan
Each extension in a private telephone system has a unique extension number. The station numbering plan for private telephone systems is controlled by the owner of the private telephone system. Many private systems have a limited range for extension numbers (e.g., 1000 -1999. This extension range is restricted due to hardware configurations.

When private telephone systems are interconnected to the public telephone network, the CCITT world numbering plan (E.164) and national numbering plans are used. PBX call processing systems are able to filter numbers to enable least cost routing (LCR). LCR is a telephone system feature that routes the connection of a call over the least expensive route available at the time the call is originated.

To allow automatic routing of incoming calls, direct inward dialing (DID), or higher-level trunk lines (e.g., T1 or E1) with advanced signaling may be used. DID connections are 2-wire trunk-side (network side) EO connections that provide additional information to the PBX to allow the automatic routing of calls within the PBX system. Although network signaling on incoming 2-wire circuits is primarily limited to one-way, incoming service, DID connections employ different supervision and address pulsing signals than dial lines. Typically, DID connections use a form of loop supervision called reverse battery, which is common for one-way trunk-side connections. Until recently, most DID trunks were equipped with either Dial Pulse (DP) or dual tone multifrequency (DTMF) address pulsing. While many carriers would have preferred to use multifrequency (MF) address pulsing, a number of LEC’s prohibited the use of MF on DID trunks.

No comments:

Post a Comment